PENINGKATAN EFEKTIVITAS PENGOLAHAN AIR LIMBAH PROSES PEMUTIHAN PULP DENGAN REAKTOR UP-FLOW ANAEROBIC SLUDGE BLANKET (UASB) DAN LUMPUR AKTIF TERMOBILISASI

Yusup Setiawan*, Sri Purwati, Rina S Soetopo, Kristaufan J.P.
* Balai Besar Pulp dan Kertas, Bandung.

INCREASING THE EFFECTIVITY OF PULP BLEACHING PROCESS EFFLUENT TREATMENT BY UP-FLOW ANAEROBIC SLUDGE BLANKET (UASB) AND MOBILIZED ACTIVATED SLUDGE REACTORS

ABSTRACT

Treatment of pulp bleaching effluent using Upflow Anaerobic Sludge Blanket (UASB) and Suspended Carrier Biofilm (SCB) systems has been carried out. Upflow Anaerobic Sludge Blanket (UASB) and Suspended Carrier Biofilm (SCB) reactors were run on the Hydraulic Retention Time (HRT) of 12 hours, respectively. Micronutrient solution containing some traces elements was added into feed wastewater of UASB reactor to accelerate the growth of granular sludge. Sludge characteristics of UASB and activated sludge reactors were observed and analyzed. Settling rate of granular sludge in UASB reactor was also measured. Effluent of UASB reactor was treated further in Suspended Carrier Biofilm (SCB) reactor. Concentration of COD, TSS and AOX parameters both influent and effluent of UASB reactor as well as suspended carrier biofilm (SCB) reactor were analyzed. Result revealed that UASB reactor run on the Hydraulic Retention Time (HRT) of 12 hours could remove COD up to 90%, TSS up to 91% and AOX up to 84%. Addition of micronutrient solution has accelerated the growth of granular sludge. Dark-brownish color of granular sludge with the diameter of 1 - 4 mm having settling rate of 70 - 120 m/hr has been formed. SCB reactor as post-treatment could remove COD of 85%, TSS of 73% and AOX of 76%. Sequential UASB and SCB reactors could increase the effectiveness of pulp and paper mill wastewater treatment with the removal of dissolved and suspended organic pollutant more than 94%.

Keywords: AOX, COD, activated sludge, granular sludge, UASB.

INTISARI

Pengolahan air limbah proses pemutihan pulp dengan sistem Upflow Anaerobic Sludge Blanket (UASB) dan lumpur aktif termobilisasi telah dilakukan. Reaktor (UASB) dan lumpur aktif termobilisasi masing-masing dioperasikan pada waktu tinggal 12 jam. Larutan mikronutrisi yang mengandung ion-ion logam dalam jumlah sedikit ditambahkan ke dalam umpan reaktor UASB untuk mempercepat pertumbuhan lumpur granul. Karakteristik lumpur reaktor UASB diamati dan dianalisa. Kecepatan pengendapan lumpur granul juga diukur. Efluen reaktor UASB diolah lebih lanjut dalam reaktor lumpur aktif termobilisasi. Parameter COD, TSS dan Adsorbable Organic Halides (AOX) pada influen dan efluen baik reaktor UASB dan lumpur aktif termobilisasi dianalisa. Hasil menunjukkan, bahwa pada waktu tinggal 12 jam, reaktor UASB dapat mereduksi COD 90%, TSS 91% dan AOX 84%. Penambahan larutan mikronutrisi berpengaruh signifikan terhadap pertumbuhan mikroorganisme dalam pembentukan lumpur granul. Lumpur granul yang terbentuk berdiameter 1 - 4 mm berwarna hitam kecoklatan memiliki kecepatan pengendapan 70 - 120 m/jam. Pengolahan lanjutan dengan sistem lumpur aktif termobilisasi masing-masing dapat mereduksi COD 85%, TSS 73% dan AOX 76%. Sistem pengolahan air limbah gabungan reaktor UASB dan lumpur aktif termobilisasi dapat meningkatkan efektifitas pengolahan air limbah industri pulp dan kertas dengan reduksi pencemar organik terlarut dan tersuspensi lebih besar dari 94%.

Kata kunci : AOX, COD, lumpur aktif, lumpur granul, UASB
PENDAHULUAN

Industri pulp dan kertas merupakan salah satu industri penting Indonesia yang cukup besar kontribusinya terhadap pendapatan negara dari nilai eksporannya. Pada saat ini ada 84 pabrik pulp dan kertas terdiri dari 3 pabrik pulp, 71 pabrik kertas, dan 10 pabrik terintegrasi pulp dan kertas (IPPI Directory, 2007). Berdasarkan survei dan data yang diperoleh, ada 9 pabrik pulp dan kertas yang memproduksi pulp putih dengan kapasitas produksi antara 39.600 – 1.820.000 ton pulp putih per tahun. Dalam proses produksi tersebut, proses pemutihan pulp masih ada yang menggunakan secara konvensional dan ada juga yang sudah modern menggunakan proses pemutihan
Elementally Chlorine Free (ECF). Kadar Adsorbable Organic Halides (AOX) pada air limbah proses pemutihan pulp secara konvensional, tinggi sampai 25 mg/l, sedangkan pada sistem ECF jauh lebih rendah. Umumnya industri pulp dan kertas sudah mempunyai instalasi pengolahan air limbah menggunakan proses lumpur aktif.

Beberapa literatur menyebutkan bahwa air limbah proses pemutihan dapat menyebabkan gangguan kesehatan. Lebih dari 200 jenis senyawa terklorinasi telah teridentifikasi dari air limbah proses pemutihan pulp kraft. Beberapa senyawa organik terklorinasi ini bersifat toksis dan terakumulasi di lingkungan perairan (Bryant et al., 1987; Martinsen et al., 1988; Leach, 1980), sehingga di beberapa negara maju sudah ada tekanan-tekanan baik secara peraturan lingkungan maupun pasar untuk menurunkan atau menghilangkan senyawa organik terklorinasi tersebut dari buangan limbah.

Pada saat ini, industri cenderung menurunkan konsumsi air proses dan meningkatkan rendemen pulp, sehingga menghasilkan air limbah yang semakin pekat mengandung polutan yang lebih tinggi. Karakteristik air limbah demikian memerlukan pengolahan secara anaerobik yang menggunakan bakteri untuk menuraikan zat organik (COD, BOD) menjadi gas CH₄ dan CO₂. Proses penguraian zat organik oleh bakteri terjadi dalam 2 tahapan yaitu asetogenesis dan metanogenesis. Terdapat banyak jenis reaktor anaerobik yang dapat digunakan untuk pengolahan air limbah, namun reaktor UASB lebih sesuai untuk pengolahan air limbah industri pulp dan kertas. Reaktor UASB mempunyai kemampuan mengolah air limbah dengan beban organik tinggi dan toleran terhadap proses beban kejut (shock loading). Gambar 1 memperlihatkan konsep proses pengolahan air limbah dengan reaktor UASB.

![Diagram Proses Pengolahan Air Limbah dengan Reaktor UASB]

Gambar 1. Konsep pengolahan air limbah dengan reaktor UASB dan kolam stabilisasi

Komponen utama dari proses pengolahan ini adalah clarification, pretreatment, sistem UASB, dan aerobic stabilization basin (ASB). Clarification diperlukan untuk menurunkan kadar zat tersuspensi (TSS) yang terkandung dalam air limbah. Pretreatment tank diperlukan untuk menambahkan bahan kimia nutrisi (N & P) ke dalam air limbah agar proses dalam
reaktor UASB optimal. Reaktor UASB terdiri dari 3 bagian yang berbeda fasa yaitu padatan, cairan, dan gas. Sludge blanket berada di bagian bawah reaktor yang tingginya sekitar 1/3 reaktor. Sistem pengumpulan gas terjadi di bagian tengah reaktor UASB, dan air limbah terolah keluar dari bagian atas reaktor UASB.

Sampai saat ini industri pulp dan kertas di Indonesia belum ada yang menggunakan reaktor UASB dalam pengolahan air limbahnya, karena lumpur granul masih diimpor. Untuk mengantisipasi baku mutu air limbah yang semakin ketat, reaktor UASB mempunyai prospek untuk diterapkan dalam sistem pengolahan air limbah industri pulp dan kertas. Atas dasar uraian tersebut diatas penelitian peningkatan efektivitas pengolahan air limbah industri pulp dan kertas dengan proses (UASB) dan lumpur aktif termobilisasi dilakukan.

Makalah ini menjelaskan hasil penelitian peningkatan kinerja pengolahan air limbah industri pulp dan kertas dengan reaktor UASB dan reaktor lumpuraktif termobilisasi dalam menurunkan kadar pencemar AOX, COD, dan TSS. Selain itu juga membahas pertumbuhan dan perkembangan per-tumbuhan pembentukan lumpur granul dan kualitas lumpur granul yang dihasilkan dalam reaktor UASB.

BAHAN DAN METODO

a). Reaktor UASB

Reaktor UASB yang digunakan dalam percobaan terbuat dari fiber glass transparan berdiameter dalam 10 cm, tinggi 1,9 m dan volume 15 L yang dilengkapi dengan alat pengukur biogas. Diagram alir percobaan seperti terlihat pada Gambar 2.

Gambar 2. Diagram alir percobaan

Air limbah yang digunakan pada percobaan ini adalah air limbah dari proses pemutihan pulp konvensional industri pulp dan kertas terintegrasi. Di dalam reaktor UASB terisi lumpur granul yang mulai terbentuk dari hasil percobaan pengolahan air limbah pemutihan pulp sebelumnya. Pada perumalaan percobaan sebelumnya, reaktor UASB dioperasikan dengan waktu tinggal 3 hari dan beban organik sekitar 0,10-0,23 kgCOD/m³.hari selama 141 hari. Setelah itu reaktor UASB dioperasikan dengan waktu tinggal 19 jam dan beban organik antara 0,80 - 3,25 kgCOD/m³.hari sampai hari 287. Selanjutnya reaktor UASB dioperasikan dengan waktu tinggal 12 jam sampai hari ke-441 dengan beban organik antara 1,92-5,0 kgCOD/m³. Setelah hari ke-441 percobaan dilanjutkan dengan air limbah yang sama; memiliki karakteristik seperti pada Tabel 1. Ke dalam tangki umpan ditambahkan juga makronutrisi yaitu urea sebagai sumber N dan K₂HPO₄ sebagai sumber P dengan perbandingan \(\text{COD} : \text{N} : \text{P} = 350 : 7 : 1 \).
Tabel 1. Karakteristik Air limbah pemutihan pulp

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>Konsentrasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AOX</td>
<td>mg/l</td>
<td>1.7 – 32.3</td>
</tr>
<tr>
<td>2.</td>
<td>COD₇</td>
<td>mg/l</td>
<td>128 – 2.349</td>
</tr>
<tr>
<td>3.</td>
<td>TSS</td>
<td>mg/l</td>
<td>28 – 745</td>
</tr>
<tr>
<td>4.</td>
<td>pH</td>
<td>-</td>
<td>6.5 – 7.6</td>
</tr>
</tbody>
</table>

Mikronutrisi sebanyak 1 mL/L yang mengandung FeCl₃.4H₂O = 1.250 mg/L, MnCl₂.4H₂O = 300 mg/L, CuCl₂.2H₂O = 20 mg/L, ZnCl₂ = 50 mg/L, CoCl₂.6H₂O = 80 mg/L, NiCl₂.6H₂O = 60 mg/L, (NH₄)₆Mo₇O₂₄ = 60 mg/L dan H₃BO₃ = 20 mg/L juga ditambahkan ke dalam tangki umpan reaktor UASB untuk mempercepat pertumbuhan lumpur granul. NaHCO₃ sebagai buffer dengan konsentrasi 1.000 – 2.500 mg/L dicampurkan juga dengan air limbah dalam tangki umpan. Air limbah umpan reaktor UASB dipertahankan pada pH antara 6.5 – 7.0. Pompa peristaltik digunakan untuk mengalirkan umpan air limbah dari tangki umpan ke reaktor UASB. Effluen reaktor UASB ditampung dan dialisasi. Biogas yang terbentuk diukur dengan alat pengukur biogas.

b). Reaktor proses lumpur aktif termobilisasi (Suspended Carrier Biofilm/SB)

Reaktor proses lumpur aktif termobilisasi (Suspended Carrier Biofilm/SB) dengan volume 15 L terbuat dari fiber glass transparan mempunyai digunakan sebagai pengolahan lanjutan. Reaktor disi dengan plastik carrier sebanyak 30% volume reaktor. Plastik carrier ini berbentuk silinder seperti terlihat pada Gambar 3 berdiameter 1 cm dan tinggi 1 cm terbuat dari High Density Polyethylene (HDPE) dengan berat jenis sekitar 0,94 – 0,96 gram/mL.

Bibit lumpur aktif berupa lumpur flocculent yang mengandung MLSS = 5.000 mg/L dimasukkan kedalam reaktor. Ke dalam reaktor dialirkan udara dengan kompresor melalui difuser supaya kadar oksigen terlarut dalam reaktor > 2 mg/L. Reaktor lumpur aktif dioperasikan dengan waktu tinggal 12 jam.

c). Metoda Analisa

HASIL DAN PEMBAHASAN

Kinerja Reaktor UASB dalam Penurunan Kadar pencemar

Pada pengoperasian reaktor UASB dengan waktu tinggal 12 jam, reduksi TSS relatif stabil dan meningkat secara perlahan hingga reduksi TSS dapat mencapai 91,54% seperti pada Gambar 4.

Gambar 4. Kinerja reaktor UASB dalam reduksi TSS
Bila dibandingkan dengan baku mutu, konsentrasi TSS efluen reaktor UASB berkisar antara 6 - 110 mg/L yang secara keseluruhan dapat memenuhi baku mutu yaitu \(\leq 100 \) mg/L.

Kinerja reaktor UASB dalam mereduksi COD dan AOX dapat dilihat pada Gambar 5 dan 6. Pada waktu tinggal 12 jam reaktor UASB dapat mereduksi COD antara 34 - 90\% dengan konsentrasi COD efluen reaktor UASB antara 24 - 817 mg/L. Dari Gambar 5 terlihat bahwa ada sebagian COD efluen reaktor UASB masih diatas baku mutu. Adapun reduksi AOX yang dihasilkan berkisar antara 15 - 84\% dengan konsentrasi AOX berkisar antara 1,6 - 15,3 mg/L.

![Gambar 5. Kinerja reaktor UASB dalam reduksi COD](image)

![Gambar 6. Kinerja reaktor UASB dalam reduksi AOX](image)

Gambar 6. Kinerja reaktor UASB dalam reduksi AOX

Perkembangan Pertumbuhan Lumpur Granul

Pada permulaan pembentukan lumpur granul, bagian dasar reaktor UASB mengan-
dung MLSS = 52.694 mg/L dan MLVSS = 37.856 mg/L atau perbandingan VSS/SS = 0,71. Lumpur sudah berwarna hitam kecoklatan dan sudah mulai terbentuk lumpur granul berdiameter kurang dari 2 mm.

Dengan penambahan terus mikronutrisi dan dipertahankannya kondisi optimum dalam reaktor UASB, lumpur granul dalam reaktor UASB tumbuh makin besar. Ukuran lumpur granul yang terbentuk berdiameter 1 - 4 mm yang memiliki specific gravity (sg) 1,12 (Gambar 7). Lumpur granul merupakan suatu gumpalan kumpulan dari partikel-partikel lumpur yang mengandung mikroorganisme dan mineral-mineral. Karakteristik lumpur granul yang terbentuk telah berada pada kisaran lumpur granul pada umumnya yang mempunyai perbandingan VSS/SS antara 0,70 sampai 0,85.

![Gambar 7. Lumpur granul yang terbentuk](image)

Gambar 7. Lumpur granul yang terbentuk

![Gambar 8. Distribusi ukuran partikel lumpur granul](image)

Gambar 8. Distribusi ukuran partikel lumpur granul

Gambar 8 menunjukkan bahwa partikel lumpur granul yang paling banyak terbentuk dari satu pengukuran berjumlah 597 partikel adalah ID Class 2 yaitu berukuran antara 50 - 100 \(\mu \)m sebanyak 407 partikel, selanjutnya ID Class 3 berukuran antara 100 -150 \(\mu \)m sebanyak 89 partikel dan sisanya berukuran lebih kecil. Dari pengukuran distribusi partikel tersebut diperoleh ukuran minimum, rata-rata dan maksimum partikel lumpur granul masing-masing adalah 54 \(\mu \)m, 158 \(\mu \)m dan 1.986 \(\mu \)m.
Didalam percobaan ini penambahalan mikronutrisi memberikan pengaruhi signifikan terhadap pertumbuhan bakteri dalam pembentukan lumpur granul di dalam reaktor UASB. Penambahalan mikronutrisi sebanyak 1 mL/L dapat mencukupi kebutuhan trace elements seperti Ni, Co, Mo, dan Zn dalam pembentukan lumpur granul pengolahan air limbah proses pemutihan pulp. Terlihat dari hasil uji SEM lumpur granul bahwa lumpur granul mengandung beberapa mineral dari mikronutrisi yang ditambahkan ke dalam air limbah serta mineral lainnya yang kemungkinannya berasal dari air limbah sendiri (Gambar 9).

Gambar 9. Kandungan mineral dalam lumpur granul

Bila lumpur granul telah terbentuk di dalam reaktor UASB, kecepatan pengendapan lumpur akan menjadi sangat baik. Hal ini terlihat pada saat pengukuran kecepatan pengendapan lumpur granul yang mana semakin besar ukuran lumpur granul, kecepatan pengendapannya semakin besar. Lumpur granul yang terbentuk di dalam reaktor UASB mempunyai kecepatan pengendapan baik yaitu sekitar 70 - 120 m/jam yang diklasifikasikan kecepatan pengendapan tinggi (Andras, et.al., 1989; Lettinga et al., 1980).

Dengan demikian reaktor UASB dapat dioperasikan stabil pada beban organik yang tinggi tanpa kehilangan lumpur karena terbawa oleh aliran. Lumpur granul akan mempunyai waktu tinggal sel yang lama di dalam reaktor, sehingga akan terjadi akumulasi bakteri metanogenik yang mempunyai keaktifan metanogenik tinggi. Biofilm lumpur granul dapat melindungi bakteri metanogenik terhadap dampak kondisi yang kurang menguntungkan seperti beban kejut (shock loading), pH rendah dalam waktu singkat, dan lainnya.

Hasil uji Thermal Electron Microscope (TEM) (Gambar 10) menunjukkan bahwa lumpur granul yang terbentuk merupakan kumpulan beberapa populasi bakteri yang terkomposisi dari bakteri berbentuk batang dan coccos. Mikroorganisme bakteri batang bisa terdiri dari 2 sampai 4 sel atau lebih yang diperkirakan adalah Methanotrlic sp., dan bakteri yang berbentuk coccos adalah Methanosarcina (Wu Wei-min, et.al., 1985).

Dengan demikian komponen utama bakteri metanogenik dari lumpur granul dalam pengolahan air limbah pemutihan pulp yang teramat diantaranya adalah Methanotrlic sp. dan Methanosarcina yang sangat berguna sekali pada granulasi lumpur.

Gambar 10. Uji TEM lumpur granul

Bakteri-bakteri tersebut dapat ditemukan juga dalam lumpur granul pada pengolahan air limbah industri bir, air limbah pемotongan hewen, dan air limbah industri asam sitrat (Wu Wei-min et.al., 1985, Fang et al., 1995).

Kinerja Reaktor Proses Lumpur Aksit Termobilisasi (Suspended Carrier Biofilm) dalam Penurunan Kadar Pencemar

Hasil percobaan reaktor lumpur aktif termobilisasi (SCB) dapat dilihat pada Gambar 11, 12, dan 13. Pada waktu tinggal 12 jam, SCB dapat menerima COD 7 - 85% dengan konsentrasi COD efleun berkisar antara 13 - 309 mg/L yang memenuhi baku mutu. Sedangkan untuk parameter TSS, reaktor SCB menerima TSS sekitar 28 - 73% dengan konsentrasi efleun jauh dibawah baku mutu.
Penempelan Lumpur Aktif pada Permukaan Plastik Carrier Dalam Reactor SCB

Pada permukaan percoabaan, dalam reaktor SCB berisi bibit lumpur dan plastik carrier yang bersih seperti pada Gambar 3 bergerak berputar-putar mengikuti gerakan aliran udara yang keluar dari difuser untuk mempertahankan kadar oksigen terlarut > 2 mg/L. Oleh karena makin sering kontak antara lumpur aktif dengan plastik carrier, maka warna permukaan plastik carrier terutama dibagian dalam plastik carrier dan juga di bagian luarinya berubah warna yang makin lama makin gelap dikarenakan makin banyaknya mikroorganisme dalam lumpur aktif yang menempel di permukaan plastik carrier seperti pada Gambar 14.

Hasil pengujian berat lumpur aktif yang menempel pada permukaan plastik carrier adalah sekitar 1,4 gram lumpur per gram berat plastik carrier. Ini menunjukkan bahwa makin banyaknya lumpur yang menempel pada permukaan plastik carrier konsentrasi lumpur aktif dalam bak aerasi akan semakin tinggi. Hal ini akan meningkatkan kemampuan mikroorganisme dalam mereduksi senyawa organik terlarut. Tidak seperti pada proses lumpur aktif konvensional, pada proses SCB tidak ada lumpur yang dibuang setelah pengendapan di ruang pengendapan (settling chamber) dimana air limbah terolah keluar dari bagian atas.

Gambar 11. Konsentrasi dan efisiensi reduksi COD

Gambar 12. Konsentrasi dan efisiensi reduksi TSS

Gambar 13. Konsentrasi dan efisiensi reduksi AOX

Adapun reaktor SCB sebagai pengolahan lanjutan dapat mereduksi AOX sekitar 14 - 76% dengan konsentrasi AOX sekitar 0,6 - 11,4 mg/L.
settling chamber sedangkan lumpur yang mengendap dibagian bawah settling chamber sebagian besar bercampur lagi di bak aerasi.

Kinerja Gabungan Reaktor UASB dan Proses Lumpur Aktif Termobilisasi dalam Penurunan Kadar Pencemar

Konsentrasi influen reaktor UASB dan effluen reaktor lumpur aktif untuk masing-masing parameter COD, TSS, dan AOX serta total efisiensi reduksinya dapat dilihat pada Gambar 15, 16, dan 17. Total efisiensi reduksi pada waktu tinggal 12 jam untuk parameter COD antara 52 - 94%, TSS 71 - 98%, dan AOX 37 - 95% dengan konsentrasi efluennya untuk parameter COD = 13 - 474 mg/L, TSS = 2 - 44 mg/L dan AOX = 0,6 - 11,4 mg/L.

Gambar 15. Konsentrasi dan total efisiensi reduksi COD

Gambar 16. Konsentrasi dan total efisiensi reduksi TSS

Gambar 17. Konsentrasi dan total efisiensi reduksi AOX

Hasil yang diperoleh ini relatif lebih tinggi dan lebih stabil daripada yang diperoleh dari percobaan sebelumnya, dimana reduksi untuk masing-masing parameter TSS (31 - 98%), COD (76 - 96 %) dan AOX (37 - 95%); lebih berfluktuasi. Begitu juga dengan konsentrasi efluen yang dihasilkan untuk parameter TSS dan COD dapat memenuhi baku mutu.

KESIMPULAN

- Reaktor UASB dengan waktu tinggal 12 jam dapat mereduksi COD 90%, TSS 91% dan AOX 84%.
- Pada pengolahan air limbah proses pemutihan pulp dengan reaktor UASB, dapat terbentuk lumpur granul berwarna hitam kecoklatan berdiameter mencapai 4 mm yang memiliki kecepatan pengendapan sampai 120 m/jam.
- Populasi bakteri lumpur granul terdiri dari bakteri filament (Methanotric sp.) dan cocccus (Methanosarcina) yang sangat berguna pada granulasi lumpur dan reduksi senyawa organik.
- Reaktor lumpur aktif termobilisasi (Suspended Carrier Biofilm) dapat mereduksi COD tertinggi 85%, AOX tertinggi 76% dan TSS tertinggi 73%.
- Lumpur aktif dapat menempel pada permukaan plastik carrier HDPE. Makin tinggi konsentrasi lumpur aktif yang menem-
pel akan meningkatkan kemampuan mikro-
organisme dalam mereduksi senyawa organik
terlarut
- Pengolahan air limbah proses pemutihan pulp
dengan sistem reaktor UASB dan lurn-pur aktif
termobilisasi (Suspended Carried Biofilm)
dapat meningkatkan efektifitas
pengolahan air limbah industri pulp dalam
mereduksi senyawa organik terlarut dan
tersuspen sampai > 94% dengan kualitas
efluen telah memenuhi baku mutu.

DAFTAR PUSTKA

Andras E; Kennedy K; Richardson D.A. (1989),
Test for Characterizing Settleability of
Bryant C.W; Amy G.L; Allerman B.C. (1987),
Organic Halide and Organic Carbon
distribution and Removal in a Pulp and
Paper Wastewater Lagoon, J.Water
Pollution Control Fed, 59(10), 890-896.
Fang, H.H.P; Chui H.K; Li Y.Y. (1995). Microbial structure and Activity of UASB
Granules Treating Different Wastewaters,
Wat. Sci. Tech., Vol.29, No. 5-6, 87-92.
Garner, Jerry W. (1991),Environmental
Solutions for the pulp and paper industry,
Miller Freeman, San Francisco, 90 – 92.
Indonesian Pulp and Paper Industry Directory
(2007), Indonesian Pulp and Paper
Association, PT. Gramedia Jakarta.
Leach, J.M (1980), Loading and effects of
chlorinated organic from bleached pulp
mills. Proc.3rd Conf. Water Chlorination:
Environmental Impacts and Health
Effects, October 28 – November 2, 1979,
Lettinga, G. et al.(1980), Biotechnology
and bioengineering, 22, 699 – 734.
Luostarinen S. 2005, Anaerobic On-Site
Wastewater Treatment at Low
Temperatures, Jyväskylä Studies in
Biological and Environmental Science
158, University of Jyväskylä, Jyväskylä.
Methods for Determination of Sum
Parameters and Characterization of
Organochlorine Compounds in Spent
Bleach Liquors from Pulp Mills and
Water, Sediment and Biological Samples
from receiving Waters, Wat. Sci. Tech., ,
Münch E.v, Barr K, Watts S, and Keller J
(2000), Suspended carrier technology
allows upgrading high-rate activated
sludge plants for nitrogen removal via
process intensification, Water Science and
Technology J. Vol 41 No 4–5:5–12 ©
IWA Publishing
Vanhooren H, Yuan Z, and. Vanrolleghem P., A
(2002), Benchmarking nitrogen removal
suspended-carrier biofilm systems using
dynamic simulation, Water Science and
Technology Journal. Vol 46 No 1–2 pp
327–332, IWA Publishing.
Wu Wei-min, Hu Ji-cui, Gu Xia-sheng (1985),
Properties of Granular Sludge in Upflow
Anaerobic Sludge Blanket (UASB)
Reactors and Its Formation, Proceeding of
the fourth International Symposium on
Anaerobic Digestion, Guan Zhou, China,