Antibacterial Property of a Coral-Associated Bacterium

Pseudoalteromonas luteoviolacea Against Shrimp Pathogenic

Vibrio harveyi (In Vitro Study)

OCKY KARNA RADJASA12*, TORBEN MARTENS2, HANS-PETER GROSSART3,
AGUS SABDONO12, MEINHARD SIMON3, TONNY BACHTIAR12

1Department of Marine Science, Diponegoro University, Semarang 50275
2Center for Tropical Coastal and Marine Studies, Diponegoro University, Widya Puraaya, Semarang 50275
3Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26111 Oldenburg, Germany

Diterima 7 September 2004/Disetujui 13 Mei 2005

A coral-associated bacterium was successfully screened for secondary metabolites production based on PCR amplification of the nonribosomal peptide synthetase gene and was identified as closely related to _Pseudoalteromonas luteoviolacea_ based on its 16S rDNA. The bacterium was found to inhibit the growth of shrimp pathogenic bacterium _Vibrio harveyi_. To characterize the inhibiting metabolite, a 279 bp long DNA fragment was obtained and the deduced amino acid sequence showed conserved signature regions for peptide synthetases and revealed a high similarity to NosD (40% identity), a multifunctional peptide synthetase from _Nostoc_ sp. GSV224, and NdaB (44% identity), a peptide synthetase module of _Nodularia spumigena_.

Due to the close spatial vicinity of these biofilm-forming bacteria, it can be expected that the indigenous microbial population is adapted to competitive conditions, e.g. for available nutrients and space (Slattery et al. 2001). The production of secondary metabolites is a common adaptation of these bacteria to compete in such microenvironments. More information on coral-associated bacteria might be desirable, as many of these bacteria serve as sources of secondary metabolites including novel antibiotics. Here, we report on antibacterial property of a secondary metabolite-producing coral bacterium closely related to _Pseudoalteromonas luteoviolacea_ against shrimp pathogenic bacterium _V. harveyi_.

MATERIALS AND METHODS

Sampling and Isolation of Coral-Associated Bacteria. The coral was collected from Teluk Awur (06°37’02,5” N; 110°38’21,4” E), North Java Sea, Indonesia by scuba diving and identified as _Acropora_ sp. according to Veron (1986). Upon collection, coral fragments were put into sterile plastic bags (Whirl-Pak, Nasco, USA) and immediately brought to the Marine Station of the Diponegoro University, where it was rinsed with sterile seawater and scraped off with a sterile knife. The resultant tissues were serially diluted, spread on ½ strength ZoBell 2216E marine agar medium and incubated at room temperature for 48 hours. On the basis of morphological features, colonies were randomly picked and purified by making streak plates (Madigan et al. 2000).

PCR-Based Screening of Nonribosomal Peptide Synthetase (NRPS) Producing Bacterial Strain. For PCR analysis, genomic DNA of strain TAB4.2 was taken from cell material on an agar plate, suspended in sterile water (Sigma, Germany) and subjected to five cycles of freeze (-70 °C) and...
thaw (95 °C). Amplification of peptide synthetase gene fragments was carried out with the degenerated primers A2gamF (5′-AAG GCN GGC GSB GCS TAY STG CC-3′) and A3gamR (5′-TTG GGB IKB CCG GTS GIN CCS GAG GTG-3′) (MWG-Biotech, Ebersberg, Germany) designed from conserved regions of various bacterial peptide synthetase sequences from GenBank (Marahiel et al. 1997).

PCR was performed with an Eppendorf Mastercycler (Eppendorf Inc., Germany) as follows: 2 μl template DNA (27 ng/μl), 40 pmol of each of the appropriate primers, 125 μmol of each deoxyribonucleoside triphosphate, 5 μl of 10 x RedTaq™ PCR buffer (Sigma, Germany), 1.2 mg ml⁻¹ (final concentration) bovine serum albumin (Sigma) and 0.75 unit RedTaq™ DNA polymerase (Sigma) were adjusted to a final volume of 50 μl with sterile water (Sigma). A PCR run comprised 40 cycles with denaturing conditions for one minute at 95 °C, annealing for one minute at 70 °C and extension for two minutes at 72 °C, respectively. Amplified DNA was examined by horizontal electrophoresis on 1.0% agarose gel in TAE electrophoresis buffer (40 mM Tris, 20 mM acetate, 2 mM EDTA) with 1 μl aliquots of PCR product and a DNA marker (Product No. 1498037, Roche Molecular Biochemicals). The gel was then stained by ethidium bromide and viewed under UV lamp.

Cloning and Sequencing of a (putative) Peptide Synthetase Domain. The amplified PCR-product was gel-purified using the Perfectprep™ Gel cleanup Kit (Eppendorf, Germany) and ligated into the pGEM-T vector (Promega, Germany) following the manufacturers protocol. Recombinant clones containing an insert were prepared using the DYEdynamic Direct cycle sequencing kit (Amersham Life Science, Inc, UK) for subsequent sequencing on an automated DNA sequencer Model 4200 (LI-COR, Inc, UK). Both strands were sequenced twice using M13F and M13R labeled with IRDye™800 as sequencing primers (Messing 1983). Prior to further analysis of the gene fragment the primer sequences on both sides of the fragment were removed. The deduced amino acid sequence of the gene fragment the primer sequences on both sides of the fragment were removed. The deduced amino acid sequence was compared for homology with BLAST database under the sequence Accession Number AY338404, the putative peptide synthetase sequence obtained from strain TAB4.2 under AY338405.

Inhibitory Interaction Test. Inhibitory interaction test of isolate TAB4.2 against pathogenic V. harveyi obtained from the collection of Microbiogenetics laboratory, Department of Biology, Diponegoro University, was performed by using the agar overlay method. The V. harveyi strain was previously isolated from infected shrimp from shrimp pond of Center for Research on Brackish Water Aquaculture, Ministry of Marine Affairs and Fisheries, Jepara, Indonesia. 100 μl culture of V. harveyi in the logarithmic phase (ca. 10⁹ cells ml⁻¹) was mixed with TSB soft agar medium, which were then poured onto the respective agar surface previously inoculated with V.harveyi and incubated for 4 d. The plate was then incubated at room temperature for 48 hours. Antibacterial activity was defined by the formation of inhibition zones around the bacterial colony.

RESULTS

PCR-Based Screening and Inhibitory Interaction Test. PCR-based screening revealed that the coral-associated bacterial strain TAB4.2 was capable of producing secondary metabolites, in particular a nonribosomal polypeptides. As indicated in Figure 1, bacterial strain TAB4.2 possesses the NRPS gene as represented by the occurrence of a single DNA

![Figure 1. PCR-based screening of NRPS producing-TAB4.2 strain. +: control (Pseudomonas fluorescens DSM No. 50117); M: DNA markers.](image)

DNA Sequence Accession Numbers. The 16S rRNA gene sequence of strain TAB4.2 has been submitted to the GenBank database under the sequence Accession Number AY338404, the putative peptide synthetase sequence obtained from strain TAB4.2 under AY338405.

![Figure 2. Inhibitory interaction of Strain TAB4.2 toward Vibrio harveyi.](image)
band of approximately 300 bp similar to the positive control on the agarose gel. Further inhibitory interaction test showed that strain TAB4.2 inhibited the growth of shrimp pathogenic V. harveyi (Figure 2).

DNA Sequencing and Phylogenetic Analysis. A comparison of the 16S rRNA gene sequence of strain TAB4.2 with sequences from GenBank demonstrated that this strain is affiliated to *Pseudoalteromonas* within the order *Alteromonadales*. The phylogenetic tree shown in Figure 3 indicating that isolate TAB4.2 is most closely related with *P. luteoviolacea* (Accession Number X82144) with a homology of 98%.

Cloning and Sequencing of a (putative) Peptide Synthetase Domain. To investigate the genetic potential of strain TAB4.2 to produce secondary metabolites, a 279 bp long DNA fragment was obtained. The deduced amino acid sequence indeed showed conserved signature regions for peptide synthetases (Figure 4). A comparison with proteins in the GenBank database revealed a high similarity to NosD (Accession Number AAF17281; 40% identity), a multifunctional peptide synthetase from *Nostoc* sp. GSV224, and also to NdaB (Accession Number AAO64402; 44% identity), a peptide synthetase module of *Nodularia spumigena*.

Signature of conserved region of putative NRPS of strain TAB4.2 (Accession Number AY338404).

1 ccacttgacc cgtcttatcc cgacagtcgc cttgaataca tgtgttctga tgctcagctt
61 gatgtagtggt gtaactacaac ggtgtcatct tcccttatca ccaagccgaaat ttttgtagcat
121 gttttatttgg atgacttgca aacgttgaaagaaatccagtcctactttggtta
181 actaacagtag ctacttgcatc aacgaaacacc aatctgctgt acattatatta c

Figure 3. Phylogenetic tree based on comparative 16S rRNA gene sequence analysis of *Pseudoalteromonas* species showing the phylogenetic affiliation of strain TAB4.2. Selected sequences from the alpha subclass of *Proteobacteria* were used to root the tree. Accession numbers of the 16S rRNA gene sequences are given in parenthesis. The bar indicates 10% sequence divergence.

Figure 4. Signature of conserved region of putative NRPS of strain TAB4.2 (Accession Number AY338404).
DISCUSSION

Inhibitory interactions among coral-associated bacteria that occur on the coral surface are of great interest to search for secondary metabolite-producing bacteria. Isolation and screening for secondary metabolite-producing bacteria in coral reef ecosystems have been strongly neglected until now. Our results highlight one coral-associated bacterium (TAB4.2) carrying the NRPS gene. This bacterium is 98% identical to *P. luteoviolacea* based on its 16S rRNA gene sequence. Alteromonadales and Vibrionales of the 6 oteobacteria were among the dominant producers of antibiotics on marine snow from the Southern California Bight (Long & Azam 2001).

Growth inhibition of *V. harveyi* by NRPS strain TAB4.2 was 11.75 ± 0.014 mm which demonstrates the so far uncharacterized secondary metabolites of strain TAB4.2 lead to antagonistic activity and, may hence lead to advantages in the competition for space and nutrients with other coral-associated bacteria. The efficient inhibition of pathogenic bacterium *V. harveyi* by strain TAB4.2 may further reflect the potential role of coral bacteria in controlling shrimp disease. A further work is needed, however, to confirm the effectiveness this strain in the shrimp culture.

Not all proteins are synthesized on ribosomes, and small polypeptides can be assembled by peptide synthetases just as other compounds. Most nonribosomal peptides from microorganisms are classified as secondary metabolites. They rarely play a role in primary metabolism, such as growth or reproduction but have evolved to somehow benefit the producing organisms (Neilan *et al.* 1999). Products of the microbial nonribosomal peptide synthesis include the immunosuppressant cyclosporine and other antibiotics such as gramicin S, tyrocin A, and surfactins (Kleinkauf & von Doehren 1996).

The comparison of the derived amino acid sequence of the putative nonribosomal peptide synthetase of strain TAB4.2 revealed a high homology to sequence fragments of known peptide synthetases. Highest similarity was found with sequences of organisms belonging to the phylum *Cyanobacteria*, from which most genera possess nonribosomal peptide synthetase genes (Christiansen *et al.* 2001). Neilan *et al.* (1999) mentioned that *Cyanobacteria* produced a myriad array of secondary metabolites, including alkaloids, polyketides, and nonribosomal peptides, some of which are potent toxins.

Interestingly, the organism closest related to TAB4.2, *P. luteoviolacea*, owns a nonribosomal peptide synthetase, which produces the siderophore alterobactin (Reid *et al.* 1993; Deng *et al.* 1995). Although the biological function of the gene product remains unknown, the feasibility that the respective gene detected in strain TAB4.2 codes for a nonribosomal peptide synthetase is high.

ACKNOWLEDGEMENTS

The work was part of a research grant provided by Directorate General of Higher Education within the PENELITIAN DASAR Programme (Contract. No. 16/P2IPTI-DPPM/PID/III/2003) and a research fellowship from German Academic Exchange Service (DAAD) within the Biosciences Special Programme awarded to Ocky Karna Radjasa.

REFERENCES

